STORMWATER MANAGEMENT REPORT

STAGE 6 GREENDALE

LOT 124 L37783
Document Name: STAGE 6 GREENDALE_SWMP.docx
Revision: 1
Date: 24-11-21
Client: Roberts Bros. Pty LtdProperty Details:LOT 124 on L37783, Mooloo Road, Pie Creek
Author: Allister Haynes be Civil (Hons) MIEAust CPEng RPEQ 13201

CONTENTS

SUMMARY 3
1.0 INTRODUCTION 3
2.0 SITE DESCRIPTION AND CRITICAL POINTS 3
3.0 STORMWATER FLOW ASSESSMENT 4
3.1 Existing Conditions 4
3.2 Proposed Drainage System 4
3.3 Drainage Improvements/Non Worsening 4
4.0 CONCLUSIONS 4
5.0 APPENDIX A - Plans S1-S186.0 APPENDIX B - HWMC Flood Study Dated 22-2-20197.0 APPENDIX C - Addendum to HWMC Flood Study 15-11-21

SUMMARY

The key points of this investigation are as follows:

1. Provide a Stormwater Management Report to Gympie Council Requirements.
2. Identify internal and external catchment stormwater influence on proposed subdivision.
3. Stormwater flows into and through the site.

1.0 INTRODUCTION

This Stormwater Management Plan (SWMP) has been prepared for the new stage 6 subdivision project at Mooloo Road, Pie Creek.

This SWMP includes detail on the management of stormwater overland and piped flows. Appendix A includes Flood Study dated 22-2-2019.

2.0 SITE DESCRIPTION AND CRITCAL POINTS

The site is located at Mooloo Road (Lot 124 L37783) Pie Creek.
The existing area is grass and scattered regrowth trees. The surrounding area is half developed rural residential areas and rural/undeveloped land to the south and east.

The overall proposal is to construct 14 allotments and roads (roadworks and drainage) for stage 6 of the Greendale development.

As a result of these works stormwater management areas include:

- Main gully flow and culverts supported by flood report.
- Pit and Pipe system including swale.

Plans S 4 and S 5 enclosed show the stormwater catchments for the site.
All road flows are below the QUDM maximum of 200 mm at the road centreline and other requirements.
Future owners of proposed Lot 136 and existing lot 51 SP311232 need to appropriately fence road reserve at culverts to allow water flows into the pipes without restriction. It is recommended that fences connect to proposed culvert headwall fences.

Owners of proposed Lots 136-137 and existing lot 51 SP311232 should not restrict flows in gullys or entry/exit of swale with solid fences. It is also critical for future owners after roads/operational works are completed (especially on lots below road level) to install driveways to Council standard drawing R-03 to ensure water is not allowed to enter their property.

3.0 STORMWATER FLOW ASSESSMENT

3.1 Existing Conditions

The site is generally rolling farmland with waterholes in the main gullys and upstream that have been modelled by flood consultants Hydrology \& Water Management Consulting. As gullys are obvious Council have not in the past required an easement over main gully flow. There is a proposed Council stormwater easement over the pipe culvert and weir flow/access on proposed Lot 136. There is also an easement for swale in proposed lot 137.

3.2 Proposed Drainage System

The proposed works in this application cover the main culverts and pit and pipe/road flows.
In the initial Flood Study Lot 136 had a house pad extending into the existing gully, and a diversion of flow to avoid erosion of house site and enable a single bank of culverts. Recently it was considered better to extend the boundary of stage 6 into stage 7 of the same estate and allow a larger house site for lot 136 and leave gullys alone. Also the culvert size and configuration was altered to suit this change. Subsequent to the bulk earthworks application, the triple 2400 west culvert group was changed to two box culverts due to cost and time issues with pipes.

These changes were included in the flood report addendum of Appendix C attached.
The swale flows from road $5 /$ Bottlebrush are designed for excess that the pipes will not cater for. It will also allow for full Q100 flow 100% pit blockage although that is considered unlikely.

3.3 Drainage Improvements/Non Worsening

Gympie Regional Council do not prefer the use of detention basins on subdivisions, so the main strategy was to use main culverts to restrict flow to original pre-development. Otherwise the strategy ensured road flows do not exceed QUDM flow requirements and future lots are safe from events up to Q100.

The main gullys will take the majority of external flows. The proposed lots adjacent to the gully have house pads created as part of development that are well above Q100 flows (generally one metre minimum).

The overall strategy is to provide Q10 piped (minor) and Q100 (major) overland flows with culvert blockage to QUDM requirements. Road drainage is for Q5 event, and culvert on Mooloo Road Q2 as per GRC standard drawing R-15 based on traffic volume.

4.0 CONCLUSIONS

A stormwater management approach has been used to assess the site's stormwater requirements and water management needs. In summary:

- Subdivision main gullys will provide an overland flow path for this subdivision and surrounding area, as noted Council have not previously required an easement over main gully flow.
- Subdivision and gully catchments as per plans S 4 and S 5 in Appendix A.
- Stormwater culverts take minor flows to Q10, remaining Q100 event includes weir flow to QUDM requirements.
- Road flows and swale flows to QUDM limits and Q5 piped.
5.0 APPENDIX A - Plans S1-S18 including check calculations


```
CERTIFIED BY: O
RPEQ No.:
DATE: 14/10/2021

LEGEND
- Stage 6 Extent
- proposed road construction

PROPOSED CULVERT
Proposed stormwater pit/PPE
- - proposed easement
- 105 - ExISTING/PROPOSED CONTOURS

Existing road


= \(\quad 40 \quad 80 \quad 120 \mathrm{~m}\) Scale 1:4000 @A3


\(\qquad\) haynes consulting engineers ABN 53613630078 PO BOX 549 NOOSA HEADS QLD 4567 (0432) 784150


CULVERT CATCHMENT
(BASE PLAN FROM HWMC IMAGE 4-1)

APPROXMATE RATONA VEREICATION OE Q100 FL OW AT PROPOSED CU VERT FLOW IN FLOOD PEPORT USED WNBM RAINFALL-RUNOFF MODEL AND SUB-CATCHMENTS \(13-25\) WITH ALLOWANCE FOR DETENTION AT
relevant points
fi \(=0.0\) MA JORITY RURAL (ATCHMENT) ( \(10=0.59, ~(100=0.71\)
c -2.5 HOURS (MAIN CHANNEL AVERAGE \(1 \%\) OVER \(2.62 \mathrm{~km}=2.4 \mathrm{rrs}\) AT \(0.3 \mathrm{~m} / \mathrm{S}\) STREAMFLOW TO QUDM) Q100 RAINFALL INTENSITY \(49 \mathrm{~mm} / \mathrm{h}\), \(01032.5 \mathrm{~mm} / \mathrm{h}\)

Q \(100=\) FCIA \(=1 / 360 \times 0.71 \times 49 \times 496=47.9\) CUMECS RATIONAL VS 47.9 CUMECS WNBM
\(10=F C I A=1 / 360 \times 0.59 \times 32.5 \times 496=26.4\) CUMECS RATIONAL VS 27.5 CUMECS WNB
etans at chlvert 1A-2A, 1B-2B
Q100 FLOW=47.9 CUMECS
MAXIMUM WEIR VELOCITY OVER CULVERTS \(=1.0 \mathrm{~m} / \mathrm{s} Q 100\)
MAXIMUM WEIR VELOCITY DOWNSTREAM OF CULVERTS OVER EMBANKMENT \(=2.4 \mathrm{~m} / \mathrm{s}\) Q 100
MAXIMUM VELOCITY CULVERT OUTLET \(=2.33 \mathrm{~m} / \mathrm{s}(0.100)\)
CULVERT FLOW Q100=41.4 CUMECS
WEIR FLOW Q \(100=6.5\) CUMECS
MAXMUM DV TRANSVERSE WEIR FLOW OVER ROAD CENTRELINE Q \(0100=0.17 \mathrm{~m}^{2} / \mathrm{s}\), DEPTH \(=0.2 \mathrm{~m}\) MAXIMUM. note peak depth and velocity do not occur at the same location.

ALCULATION OF PROPOSED CULVERT 1/I-2/I Q2 FLOW. TRAFFIC CATCHMENT OF MOOLOO ROAD -70 LOTS SO ADT 2000 AND P P PE CAPACITY TO GRC STD DRG R-15.
fi=0.2 RURAL RESIDENTIAL (ATCHMENT) C \(10=0.65, ~ C 2=0.5\)
\(\mathrm{t}=19\) MINUTES
Q2 RAINFALL INT
Y 83 -
CATHMENT AREA 3.66Ha
Q2=FIIA \(=1 / 360 \times 0.55 \times 83.9 \times 3 \times 15=0.404\) CUMECS RATIONAL
Detalls at culvert \(11-21\)
MAXIMUM VELOCITY CULVERT OUTLET \(=1.5 \mathrm{~m} / \mathrm{s}\)






HAYNES CONSULTING ENGINEERS
ABN 53613630078
PO BOX 549 NOOSA HEADS QLD 4567 (0432) 784150




```

MERTIFIED BY:

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PIT\&NODEDETALS} & & Version 3 & & \multirow[b]{2}{*}{Pervious} & & & & \multirow[b]{2}{*}{Arriving Flow} & \multirow[b]{2}{*}{Inflow} & \\
\hline Node & Area & Impervious & Pervious & Impervious & & Sum & Tc & 1 & & & ase Inflow \\
\hline & (ha) & \% & \% & c & C & CA(ha) & (min) & (mm) & (aum/s) & (0.m/s) & (au.m/s) \\
\hline 1/D & 0.420 & 20 & 80 & 0.6175 & 0.6175 & 0265 & 15 & 119 & 0088 & 0.069 & 0 \\
\hline 2/D & 0.429 & & & & & 02\% & 152 & 119 & 0087 & 0.069 & 0 \\
\hline 3/D & \(2210{ }^{+}\) & 20 & 80 & 0.6175 & 0.6175 & 1365 & 15 & 119 & 0453 & 0.453 & 0 \\
\hline 4/D & 2497 & 60 & 40 & 078 & 0.78 & 1566 & 15.4 & 118 & 0513 & 0.51 & 0 \\
\hline 5/D & 2483* & & & & & 57 & 1 & 119 & 0516 & 0.51 & 0 \\
\hline G/D & 2483* & & & & & 157 & 151 & 119 & 0514 & 0.511 & - \\
\hline 7/D & 2483* & & & & & 157 & 155 & 118 & 0509 & 0.506 & 0 \\
\hline 8D & 2483* & & & & & 157 & 155 & -118 & 0508 & 0 & 0 \\
\hline 1/C & 0.701 & 20 & 80 & 0.6175 & 0.6175 & 0433 & 13 & 126 & 0152 & 0.105 & 0 \\
\hline 1/E & 0.214 & 40 & 60 & 0.684 & 0.684 & 0146 & 6 & 6161 & а0¢5 & 0.06 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Pipedetals} & \multirow[b]{2}{*}{D/SIL} & \multirow[b]{2}{*}{Slope} & \multirow[b]{3}{*}{Da (mm)} & \multirow[b]{3}{*}{Rough ( mm )} & \multirow[b]{3}{*}{NomCapacity
\[
(\mathrm{a} . \mathrm{m} / \mathrm{s})
\]} & \multirow[b]{3}{*}{Under pressure} & \multirow[b]{3}{*}{\[
v
\]} & \multirow[b]{2}{*}{Headloss} & \multirow[b]{2}{*}{HGL} & \multirow[b]{3}{*}{Freeboard} & \multirow[b]{2}{*}{Overflow Constraint} \\
\hline Length & usil & & & & & & & & & & & \\
\hline (m) & (m) & (m) & & & & & & & Coeff (Ku) (n) & & & ( \(\mathrm{u} . \mathrm{m} / \mathrm{s}\) ) \\
\hline 41.724 & 80.661 & 77.62 & 7.14 & 375 & 0012 & 0.526 & & 3.5 & 598 & 81.152 & 118 & 0.019 Inlet Capaity \\
\hline 24.005 & 77.383 & 76.48 & 306 & 375 & 0012 & 0.34 & & 24 & 03 & 77.573 & 1.27 & None \\
\hline 8849 & 76.401 & 76312 & 101 & 525 & 0012 & 0.488 & & 25 & 0 & 76812 & 13 & o Nane \\
\hline 8511 & 76.202 & 76012 & 329 & 525 & 0012 & & & 24 & - & 76785 & 111 & O None \\
\hline 26.68 & 73,992 & 74,088 & 7.14 & 525 & 0012 & 1206 & Yes & 5.5 & 066 & 76.99 & 112 & None \\
\hline 64.02 & 73.316 & 6.55 & 588 & 525 & 0012 & & & 5.1 & 348 & 74.767 & 0.5 & None \\
\hline 3.147 & 69.532 & 69.5 & 102 & 525 & 0012 & & & 25 & 0 & 70.019 & 0.76 & None \\
\hline & & & & & & & & & & 69.961 & & \\
\hline 42242 & 78206 & 76.648 & 369 & 375 & 0012 & & & 28 & 578 & 78888 & 0.83 & 0.047 Inlet Capaity \\
\hline 4.58 & 76819 & 7673 & 1 & 375 & 0012 & & & 15 & 473 & 77.238 & 0.88 & o None \\
\hline
\end{tabular}

Note: The pipe Nominal Capacity may be exceeded if the pipe is pressurised.
QUDMallons \(6 \mathrm{~m} / \mathrm{s}\), pipegrades over \(7 \%\) make \(5 \mathrm{~m} / \mathrm{s}\) hard to obtain and require additional manholes/structures


HAYNES
CONSULTING
ENGINEERS
haYnes consulting encineers PO BOX 549 NOOSA HEADS QLD 4567

GREENDALE STAGE 6
OT 124 L37783, 14 LOTS ROADWORKS AND DRAINAGE
WATERGUM DRIVE, PIE CREEK, FOR ROBERTS BROS. PTY
STORMWATER CALCULATIONS 1
```

CERTIFIED BY:

```


```



```

Lemacdin



\section*{SLB-CATCMMNTDETALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Gtchment & Imperv. & Pervious & Imperv. & Pervious & Sum & & 1 & Q & \\
\hline & (ha) & (ha) & c & c & CA(ha) & (min) & (mm/h) & (cums) & \\
\hline 16 & 0.076 & ась & 0.78 & 078 & 0.098 & 6 & 6161 & 0.04 & \\
\hline \(\chi_{6}\) & 0.113 & 0.452 & 0.62 & \(0 \times\) & 0.349 & 13 & 126 & 0.123 & \\
\hline 1 F & 0.141 & 0.562 & 0.62 & 0e2 & 0.434 & 13 & 126 & 0.15 & \\
\hline 4 & 0.126 & 0.503 & 0.62 & \(0{ }^{2}\) & 0.388 & 13 & 126 & 0.136 & \\
\hline \({ }_{5}\) & 0.034 & 0.135 & 0.62 & \(0{ }^{2}\) & 0.104 & 13 & 16 & 0.087 & \\
\hline G & 0.071 & 0.052 & 0.78 & 078 & 0.101 & 6 & 161 & 0.045 & \\
\hline & & & & & & & & & \\
\hline UNKROMS & & & & & & & & & \\
\hline & Node & Item & Max.fow & Max. Vel. & Max U/S & Max D/S & & Max Whath & Max DxV \\
\hline & & & ( \(\mathrm{u} . \mathrm{m} / \mathrm{s}\) ) & (m/s) & HE(m) & HE(m) & & (m) & (sq.m/s) \\
\hline Cont Total & 1/G & 16 & 0.044 & & & & & & \\
\hline Pipe low & & 1G-26 & 0.046 & 29 & 67.622 & 67.559 & & & \\
\hline Ptteppass & & OF1G-26 & o & & & & & 0 & 0 \\
\hline Cont Total & 2/6 & 26 & 0.123 & & & & & & \\
\hline Ppeltow & & 2 G 3 G & 0.159 & 3.9 & 67.243 & 66.86 & & & \\
\hline Pteypass & & OF2G-46 & 0 & & & & & 0 & 0 \\
\hline Apelow & 3/6 & 3G4G & 0.159 & 25 & 66498 & 66488 & & & \\
\hline Cintotal & 1/F & \(1 F\) & 0152 & & & & & & \\
\hline Preelow & & 1F-2F & 0.106 & 26 & 7864 & 77.86 & & & \\
\hline Ptteppass & & OFIF-4F & 0.047 & & & & & \(1{ }^{1}\) & 0.07 \\
\hline Ppeliow & 2/F & 1-3F & 0.105 & 4.1 & 7.665 & 72483 & & & \\
\hline Ppetow & 3/F & 3-4F- & 0.104 & 3.7 & 72337 & 6972 & & & \\
\hline Cint Total & 4/F & 4 & 0.136 & & & & & & \\
\hline Ppelow & & 4-55 & 0.234 & 28 & 69.283 & 68881 & & & \\
\hline Pteppass & & Of4-5F & 0.051 & & & & & 235 & 0.05 \\
\hline Cint Total & 5/F & 5 & 0.087 & & & & & & \\
\hline Preelow & & E-G & 0.315 & 3 & 6823 & 6808 & & & \\
\hline Ptteppass & & OFSF-16 & 0.002 & & & & & 061 & 0.01 \\
\hline Cint Total & 6/F & ¢ & 0.045 & & & & & & \\
\hline Ppelow & & ¢- & 0.35 & 3.1 & 68095 & 67.99 & & & \\
\hline Ptt Eppass & & Ofor-2G & 0 & & & & & 0 & 0 \\
\hline Pipe How & 7/F &  & 0.35 & 3.9 & 67.925 & 66465 & Partial Are & eaffect & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{A3} & \multirow[b]{4}{*}{R} & \multirow[b]{4}{*}{14-10-21} & \multirow[b]{3}{*}{FOR COUNCIL APPROVAL} & \multirow{4}{*}{АТн} & & PSM No & 196359 & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { HAYNES CONSULTING ENGINEERS } \\
& \text { ABN 53 } 613630 \text { or8 } \\
& \text { PO BOX } 549 \text { NoOSA HEADS QLD } 4567 \\
& \text { (0432) } 784 \text { 150 }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
GREENDALE STAGE 6 \\
LOT 124 L37783, 14 LOTS ROADWORKS AND DRAINAGE WATERGUM DRIVE, PIE CREEK, FOR ROBERTS BROS. PTY LTD STORMWATER CALCULATIONS 4
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|l|}
\hline \text { 1803-GS6 } \\
\hline \frac{\text { Sheel } \mathrm{No} 0 . \text { Revision } \mathrm{No} .}{} \\
\hline \text { S17 A }
\end{array}
\]} \\
\hline & & & & & & (AHD) RL & 82.237 & & & & \\
\hline & & & & & \multirow[b]{2}{*}{APPR.} & & mumar a \({ }^{\text {assoc }}\) & & & & \\
\hline & & & REVIIIIONS & & & & & & & & \\
\hline
\end{tabular}

6.0 APPENDIX B - HWMC Flood Study dated 22-2-2019

Management Consulting

\title{
Pie Creek Flood Assessment
}

Prepared By:

\section*{Hydrology and Water \\ Management Consulting Pty Ltd}

Prepared For:
Roberts Bros Pty Ltd
Reference: J00296R1V1
Date: 22 February 2019

Hydrology and Water Management Consulting Pty Ltd PO Box 120 Coolum Beach Qld 4573
Mob 0405194639
Email admin@hydrologyandwater.com.au
Web www.hydrologyandwater.com.au
ABN 25153466981 ACN 153466981

\section*{Disclaimer}

This report has been prepared for Roberts Bros Pty Ltd (The client). It is subject to the provisions of the agreement between Hydrology and Water Management Consulting Pty Ltd (HWMC) and the Client. Study results should not be used for purposes other than those for which they were prepared.
© Copyright 2019 Hydrology and Water Management Consulting Pty Ltd.

\section*{Report Status}
\begin{tabular}{llll}
\hline Reference & Date & Status & Author \\
\hline J00296R1V1 & \(22 / 2 / 2019\) & FINAL & \begin{tabular}{l} 
R Stewart \\
RPEQ 13272
\end{tabular} \\
\hline J00296D1V1 & \(7 / 2 / 2019\) & & DRAFT \\
\hline & & \(\overline{R \text { Stewart }}\) \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{TABLE OF CONTENTS}
1 INTRODUCTION ..... 1
2 EXISTING SITE CHARACTERISTICS .....  .2
3 PROPOSED DEVELOPMENT .....  4
4 EXISTING CASE MODELLING ..... 5
4.1 Hydrology .....  5
4.1.1 Model Setup ..... 5
4.1.2 Critical Duration Assessment ..... 8
4.2 HyDRAULICS ..... 9
4.2.1 Model Setup .....  .9
4.2.2 Results ..... 12
4.2.3 Validation ..... 12
5 PROPOSED CASE MODELLING ..... 13
5.1 Proposed Case Model Updates ..... 13
5.2 Model Results. ..... 15
5.2.1 Flood Mapping ..... 15
5.2.2 Road Crossing ..... 15
5.3 Climate Change Risk Assessment ..... 16
5.4 Emergency Planning ..... 16
6 CONCLUSION ..... 17
7 REFERENCES ..... 18

\section*{Appendices}

\author{
Appendix A Survey \\ Appendix B Preliminary Cut-Fill Layout Plan \\ Appendix C Box \& Whisker Plots for Critical Duration Selection \\ Appendix D Existing Case Flood Mapping \\ Appendix E RFFE Validation \\ Appendix F Proposed Case Flood Mapping \\ Appendix G Climate Change Mapping
}

\section*{Abbreviations}
\begin{tabular}{ll} 
1D & One-Dimensional \\
2D & Two-Dimensional \\
AEP & Annual Exceedance Probability \\
ARI & Average Recurrence Interval \\
AHD & Australian Height Datum \\
ARR & Australian Rainfall and Runoff \\
BoM & Bureau of Meteorology \\
DEM & Digital Elevation Model \\
DTMR & Department of Transport and Main Roads (Queensland) \\
EY & Exceedances Per Year \\
GIS & Geographic Information Systems \\
HWMC & Hydrology and Water Management Consulting Pty Ltd \\
HCE & Haynes Consulting Engineers Pty Ltd \\
EA & Engineers Australia \\
FI & Fraction Impervious \\
IFD & Intensity Frequency Duration (rainfall intensity data) \\
RCP & Reinforced Concrete Pipe \\
RCBC & Reinforced Concrete Box Culvert \\
RFFE & Regional Flood Frequency Estimation \\
TIN & Triangular Irregular Network \\
QUDM & Queensland Urban Drainage Manual
\end{tabular}

\section*{1 INTRODUCTION}

Hydrology and Water Management Consulting Pty Ltd (HWMC) has been commissioned by Roberts Bros Pty Ltd (the client) to undertake a Flood Assessment associated with a proposed residential subdivision in Pie Creek, located within the Gympie Regional Council Local Government Area.

There are currently 30 allotments on Lot 99 L3733 that have previously been approved for subdivision and the purpose of this report is to assist in confirming the proposed lot layout and bulk earthwork requirements. Council's has previously undertaken a flood study covering this area however it is regional in nature and therefore it has been necessary to undertake a refined study to determine flood levels across the site with a higher level of accuracy.

This project has been carried out in consultation with Haynes Consulting Engineers (HCE). Preliminary bulk earthworks details for the sub-division have been provided by HCE and these have been incorporated into the modelling. Details of the proposed access road crossing over Zacharia Creek have also been developed and assessed in the flood modelling.

Hydrology \& Water
Management Consulting

\section*{2 EXISTING SITE CHARACTERISTICS}

The site is situated in the locality of Pie Creek within the Gympie Regional Council Area. Pie Creek, a tributary of the Mary River, flows northwards along the eastern boundary of the site. Zacharia Creek flows through the site to the west of the proposed subdivision prior to discharging into Pie Creek.

The site is predominately clear of bushland except for scattered trees and vegetation along the creeks.

There are currently 30 approved allotments that are proposed on Lot 99 L3733 and this is the focus subdivision of this study. Lot 99 has a total area of approximately 28.2 hectares. The bulk earthworks that have been assessed in this investigation are also situated within the adjacent Lot 500 SP246422 and Lot 124 L37783. For the purpose of this report, these three lots will be referred to as 'the site'.

The location of the site along with aerial imagery is provided on Image 2-1.


Image 2-1 - Site Location (Base Map from Google Imagery)

The topography of the site is shown thematically and with 1 m contours on Image 2-2. Ground survey captured by Murray \& Associates over a portion of the site has also been used in this investigation and is supplied in Appendix A for reference.


Image 2-2 - Topography of Site and Surrounds ( 1.0 m contour interval)

\section*{3 PROPOSED DEVELOPMENT}

The proposed development is shown on the preliminary cut-fill layout plan by HCE which is included in Appendix B. An extract from this plan is provided on Image 3-1 for ease of reference.


Image 3-1 - Extract from HCE Preliminary Cut-Fill Layout Plan

The bulk earthworks design includes cut and fill areas over Lot 99 L3733 to facilitate raising of the future allotments above the \(1 \%\) AEP flood level with an appropriate level of freeboard. Filling for two potential future house sites on Lot 124 L37783 has also been included in the developed site model along with compensatory excavation for two drainage channels to mitigate offsite flood impacts.

A design for the access road and associated culvert configuration has also been iteratively developed in collaboration with HCE. The design has been developed to ensure flood immunity requirements are achieved without causing offsite flood impacts on external properties.

Further details of the proposed development are provided in Section 5.

Hydrology \& Water
Management Consulting

\section*{4 EXISTING CASE MODELLING}

Flood modelling has been carried out for the reginal creek systems effecting the site. This includes Zacharia Creek and Pie Creek along with their major tributaries.

Modelling has been undertaken using WBNM rainfall runoff hydrology modelling to generate flow hydrographs which are then input to a TUFLOW hydraulic model. Modelling has been carried out in accordance with the latest 2016 Australian Rainfall and Runoff Guidelines (ARR2016).

\subsection*{4.1 Hydrology}

\subsection*{4.1.1 Model Setup}

Hydrologic modelling of the catchment has been carried out using WBNM software developed jointly by the University of Wollongong, Rienco Consulting and Balance R \& D. The 2017 version has been used for this investigation. The WBNM model has been run in conjunction with Storm Injector software that is developed by Catchment Simulation Solutions (v1.0.2.0). Storm Injector software facilitates modelling of the large number of ensemble rainfall temporal patterns that are required by ARR2016.

The WBNM Sub-catchments are shown on Image 4-1 and Sub-Catchment details are provided on Table 4-1.


Image 4-1 - WBNM Sub-Catchment Plan

Table 4-1 WBNM Sub-Catchment Details
\begin{tabular}{|c|c|c|c|}
\hline Sub-Catchment ID & Area (Ha) & Total Contributing Area (Ha) & Downstream SubCatchment ID \\
\hline 1 & 210.916 & 210.92 & 3 \\
\hline 2 & 320.480 & 320.48 & 3 \\
\hline 3 & 278.277 & 809.67 & 4 \\
\hline 4 & 433.185 & 1242.86 & 6 \\
\hline 5 & 188.499 & 188.50 & 6 \\
\hline 6 & 633.768 & 2065.12 & 7 \\
\hline 7 & 459.688 & 2524.81 & 8 \\
\hline 8 & 99.545 & 2624.36 & 9 \\
\hline 9 & 12.642 & 2637.00 & 10 \\
\hline 10 & 61.830 & 2698.83 & 11 \\
\hline 11 & 46.620 & 2745.45 & 12 \\
\hline 12 & 7.741 & 2753.19 & 29 \\
\hline 13 & 176.217 & 176.22 & 14 \\
\hline 14 & 122.434 & 298.65 & 15 \\
\hline 15 & 48.545 & 347.20 & 17 \\
\hline 16 & 73.936 & 73.94 & 17 \\
\hline 17 & 22.340 & 443.47 & 18 \\
\hline 18 & 8.864 & 452.34 & 19 \\
\hline 19 & 3.894 & 456.23 & 26 \\
\hline 20 & 3.671 & 3.67 & 24 \\
\hline 21 & 10.420 & 10.42 & 24 \\
\hline 22 & 10.448 & 10.45 & 23 \\
\hline 23 & 6.125 & 16.57 & 24 \\
\hline 24 & 2.010 & 32.67 & 25 \\
\hline 25 & 7.082 & 39.76 & 26 \\
\hline 26 & 20.672 & 516.66 & 28 \\
\hline 27 & 39.474 & 39.47 & 28 \\
\hline 28 & 13.247 & 569.38 & 29 \\
\hline 29 & 92.982 & 3415.55 & 30 \\
\hline 30 & 62.417 & 3477.97 & 33 \\
\hline 31 & 159.570 & 159.57 & 33 \\
\hline 32 & 121.838 & 121.84 & 33 \\
\hline 33 & 66.284 & 3825.66 & - \\
\hline
\end{tabular}

The catchments upstream of the site are rural in nature and for the purpose of this investigation have been assigned a global fraction impervious value of 0 .

A WBNM lag parameter of 1.6 has been applied to the modelling which is the default value recommended for use in the absence of calibration data.

Modelling has been carried out for the full range of standard design event storm durations ranging from 20 minutes up to 48 hours. For each duration, an ensemble of 10 different temporal patterns has been modelled and the adopted peak flow is taken as the value closest to the mean, with a bias to values above the mean (Storm Injector bias factor of 2).

Rainfall loss rates adopted for this investigation are based on values from the ARR data hub and are shown on Table 4-2 and 4-3.

Table 4-2 WBNM Rainfall Loss Rates
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Pervious Area \\
Initial Loss \\
(mm)
\end{tabular} & \begin{tabular}{c} 
Pervious Area \\
Continuing \\
Loss (mm/hr)
\end{tabular} & \begin{tabular}{c} 
Impervious Area \\
Initial Loss \\
\((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{c} 
Impervious Area \\
Continuing \\
Loss (mm/hr)
\end{tabular} \\
\hline \begin{tabular}{c} 
Varies \\
(see table 5-3)
\end{tabular} & 3.3 & 0 & 0 \\
\hline
\end{tabular}

Table 4-3 WBNM Pervious Area Initial Loss (mm)
\begin{tabular}{|c|c|c|}
\hline Duration & \(\mathbf{1 0 \%} \mathbf{A E P}\) & \(\mathbf{1 \%} \mathbf{A E P}\) \\
\hline 10 min & 42.8 & 40.2 \\
\hline 15 min & 42.8 & 40.2 \\
\hline 20 min & 42.8 & 40.2 \\
\hline 25 min & 42.8 & 40.2 \\
\hline 30 min & 42.8 & 40.2 \\
\hline 45 min & 42.8 & 40.2 \\
\hline 1 hour & 42.8 & 40.2 \\
\hline 1.50 hour & 44.1 & 33.6 \\
\hline 2 hours & 40.9 & 32.3 \\
\hline 3 hours & 40.5 & 24.4 \\
\hline 6 hours & 30.8 & 13.3 \\
\hline 12 hours & 32.8 & 0 \\
\hline 18 hours & 34.5 & 0 \\
\hline 24 hours & 35.3 & 0 \\
\hline 36 hours & 40.4 & 8.6 \\
\hline 48 hours & 41.9 & 17.4 \\
\hline
\end{tabular}

BoM's ARR2016 Rainfall IFD data has been used for this investigation. Design rainfall depths are shown on Table 4-4.

Table 4-4 Design Rainfall Depths (mm)
\begin{tabular}{|c|c|c|}
\hline Duration & \(\mathbf{1 0 \%}\) AEP & \(\mathbf{1 \%}\) AEP \\
\hline 20 min & 38.9 & 56.5 \\
\hline 25 min & 43.1 & 62.7 \\
\hline 30 min & 46.5 & 67.8 \\
\hline 45 min & 54.1 & 79.1 \\
\hline 1 hour & 59.5 & 87.4 \\
\hline 1.5 hour & 67.4 & 99.9 \\
\hline 2 hour & 73.6 & 110 \\
\hline 3 hour & 83.6 & 127 \\
\hline 4.5 hour & 96.1 & 148 \\
\hline 6 hour & 107 & 167 \\
\hline 9 hour & 126 & 202 \\
\hline 12 hour & 143 & 232 \\
\hline 18 hour & 172 & 286 \\
\hline 24 hour & 197 & 332 \\
\hline 30 hour & 218 & 372 \\
\hline 36 hour & 237 & 407 \\
\hline 48 hour & 267 & 465 \\
\hline
\end{tabular}

\subsection*{4.1.2 Critical Duration Assessment}

A critical duration assessment has been carried out key locations within the study area. The adopted critical duration events are shown in Table 4-5. The mean value temporal pattern from the ensembles of the critical duration events has then been selected to run through the TUFLOW Model.

Box and Whisker plots for the 1\% AEP ensemble results associated with the key locations are provided in Appendix C. These plots also show the WBNM peak flows however it should be noted that these will differ slightly from the flows used in the TUFLOW model because of differences in stream routing between the two modelling systems.

Table 4-5 Critical Durations at Key Locations
\begin{tabular}{|l|c|c|}
\hline Location & \(\mathbf{1 0 \%}\) AEP & 1\% AEP \\
\hline Model Outlet (WBNM ID 33) & 6 hr & 6 hr \\
\hline \begin{tabular}{l} 
Just downstream of Proposed Access Road Crossing \\
(WBNM ID 26)
\end{tabular} & 6 hr & 6 hr \\
\hline \begin{tabular}{l} 
Minor Tributary of Zacharia Creek which flows to western \\
culverts under Mooloo Rd (WBNM ID 24)
\end{tabular} & 2 hr & 1.5 hr \\
\hline
\end{tabular}

\subsection*{4.2 Hydraulics}

\subsection*{4.2.1 Model Setup}

Hydraulic modelling has been undertaken using TUFLOW HPC which is software developed by BMT WBM in Brisbane. TUFLOW is a computational engine that provides one-dimensional (1D) and two-dimensional (2D) solutions for the free-surface flow equations to simulate flood and tidal wave propagation.

TUFLOW HPC version 2018-03-AB-iSP-w64 has been used for this investigation.
The TUFLOW Model Layout is shown on Figure 5-1 and this includes thematic mapping of the model topography levels.

The TUFLOW model topography is based on a 5 m grid. Model topography is largely based on Aerial LiDAR which has been provided by Gympie Council for using in this investigation. Ground survey of a portion of the site has also been incorporated into the model for improved representation of site ground levels. The ground survey has also been used to assess the accuracy of the LiDAR which was found to be a reasonable match with the ground survey (generally within approximately \(+/-200 \mathrm{~mm}\) ).

A manning's ' \(n\) ' hydraulic roughness value of 0.1 has been applied globally to the existing case modelling. This value is conservative for the rural nature of the floodplain and makes allowance for potential revegetation within the floodplain which may occur in the future

The two sets of culverts under Mooloo Road have been incorporated into the TUFLOW model based on survey detail by Murray \& Associates. The western set of culverts are \(2 / 1900 \times 1600\) RCBC with an US IL of 69.0 m AHD. The eastern set of culverts are \(4 / 750 \mathrm{~mm}\) RCP with an US IL of 70.1 m AHD. These culverts have been modelled using TUFLOW's 1D links (1d_nwk).

The TUFLOW Model has been run for the \(10 \%\) and \(1 \%\) AEP events based on the mean ensemble temporal pattern associated critical durations described in Section 4.1.2.

Catchment inflow boundary conditions of the TUFLOW model have been incorporated using TUFLOW's '2D_sa polygon' approach. This means, that for each WBNM sub-catchment, the inflow hydrograph is applied directly onto the 2D grid as follows:
- If all cells in the 2D_sa polygon are dry (typically at start of simulation), flow will be directed to the lowest 2D calculation point within the polygon.
- If one or more cells are wet within the polygon the total flow is distributed over all wet cells.

All sub-catchment inflows are local catchment hydrographs except for sub-catchments 7 and 14 which are total catchment hydrographs for the full contributing catchments.

A climate change sensitivity run has been modelled to understand the potential risks associated with climate change. The climate change scenario assumes a \(20 \%\) increase in design rainfall intensity for the year 2100 which is based on the current recommendation of the QLD Government.

The downstream boundary condition is a normal depth rating curve which is calculated by TUFLOW based on a flood slope of \(1 \%\). The downstream boundary condition has been placed more than 2 km downstream of the site to ensure that boundary condition effects do not influence results at the site.


\subsection*{4.2.2 Results}

Peak flood depth mapping for the existing case modelling is provided in Appendix D. The flood maps for each AEP are based on the envelope of peak results for the various critical durations modelled.

Peak flows extracted from the TUFLOW model at key locations are provided below:

Table 4-6 Peak Flows at Key Locations
\begin{tabular}{|l|c|c|}
\hline Location & \(\mathbf{1 0 \%}\) AEP ( \(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\) & \(\mathbf{1 \%}\) AEP (m \({ }^{\mathbf{3} / \mathbf{s})}\) \\
\hline Zacharia Creek at proposed crossing & 27.5 & 47.9 \\
\hline Pie Creek midway through Site & 71.1 & 172.2 \\
\hline Pie Creek downstream of Zacharia Confluence & 87.5 & 218.1 \\
\hline Pie Creek at Model Outlet & 96.8 & 238.8 \\
\hline
\end{tabular}

\subsection*{4.2.3 Validation}

Peak flows at the outlet of the TUFLOW model have been validated against the ARR2016 Regional Flood Frequency Estimation Model (RFFE). The TUFLOW peak flow at the model outlet for the \(1 \%\) AEP event is \(238.8 \mathrm{~m}^{3} / \mathrm{s}\). This is based on a critical duration of 6 hours and the mean temporal pattern from the ensemble of events. This compares very well to the RFFE value of \(240.0 \mathrm{~m}^{3} / \mathrm{s}\). Details of the RFFE are provided in Appendix E.

Hydrology \& Water
Management Consulting

\section*{5 PROPOSED CASE MODELLING}

\subsection*{5.1 Proposed Case Model Updates}

The proposed case model is equivalent to the base case model except for the design case updates described in this section.

The location of the proposed design elements incorporated into the TUFLOW model are shown on Image 5-1.


Image 5-1 - Proposed Case Model Updates

The proposed access road has been incorporated into the model based on a design tin provided by HCE on \(25 / 1 / 2019\). The design road crossing has a minimum crest level at the sag of 69.25 m AHD. The adopted road profile is shown on Image 5-2.


\section*{Image 5-2 - Access Road Crossing Longitudinal Profile}

This road crossing has been modelled with a manning's ' \(n\) ' of 0.03 . The remainder of the development site has been left consistent with the existing case model (' \(n\) ' of 0.1 ).

The proposed culverts at the access road crossing of Zacharia Creek have been modelled as:
- \(4 / 2250\) RCP with a length of 15 m . USIL of 66.43 and DSIL of 66.35 m AHD.
- \(1 / 2700\) RCP with a length of 15 m . USIL of 66.15 and DSIL of 66.15 m AHD.

The 2700 RCP has been given a reduced invert level to allow fish passage.
A design blockage factor of \(20 \%\) has been applied.
Modelling assumes that the two branches of Zacharia Creek upstream of the proposed access road crossing will be joined by carrying out excavation immediately upstream of the road crossing for a distance of approximately 12 m .

Design earthworks for the remainder of the development site have been incorporated using the design tin provided by HCE on \(18 / 9 / 18\). The exception to this is the cut and fill associated with the south-west lot filling situated south of Mooloo Rd. This has been incorporated based on the HCE design tin provided on 22/1/19.

Diversion channel 1 shown on Image 5-1 has been incorporated to mitigate upstream flood level impacts and to divert the eastern branch of Zacharia Creek around the adjacent fill pad. This channel has been modelled using TUFLOW z-point modifiers as follows:
- Channel top width of 10 m
- Channel base width of 5 m
- USIL of 70, DSIL of 68 m AHD.
- Length of approximately 90 m

\subsection*{5.2 Model Results}

\subsection*{5.2.1 Flood Mapping}

Flood mapping for the proposed case modelling is provided in Appendix F. This includes peak flood depth mapping, peak flood level impact mapping and a plan showing peak flood levels for the \(1 \%\) AEP across the site. In addition to this, peak flood level grids will be made available to HCE to assist bulk earthworks design to ensure final lot levels have an acceptable level of flood immunity.

The peak flood level impact maps show that flood level increases are generally contained within the development site boundary. There are some minor flood level increases shown on the rural land south of Mooloo Rd which occur as a result of the fill and associated drainage swale in this area. It is our view that these minor, localised flood level impacts are of no consequence because they:
- Are generally, less than 30 mm
- Are caused by a re-distribution of flood waters across the site boundary as opposed to an increase in peak flow.
- Do not cause a meaningful increase to the area of flood inundation extent

The flood level increases shown over the land to the east of Pie Creek are understood to be contained on land owned by the Client and therefore are not of concern.

\subsection*{5.2.2 Road Crossing}

The proposed road crossing has been designed to be flood free in the \(10 \%\) AEP event and this has been achieved as shown on the flood maps in Appendix F.

The crossing also needs to comply with QUDM's requirements for overtopping during the major flood event ( \(1 \%\) AEP). These requirements are set out in table 7.4.5 of QUDM which states that peak flow depths over the road are to be less than 200 mm and have a depth-velocity product of less than \(0.3 \mathrm{~m}^{2} / \mathrm{s}\). Modelling predicts that the peak depth over the road crest is less than 200 mm and the depth-velocity product is less than 0.2 m . Therefore, this road design complies with QUDM's requirements for transverse flow limits.

Management Consulting

\subsection*{5.3 Climate Change Risk Assessment}

A \(1 \%\) AEP climate change scenario has been run based on a \(20 \%\) increase in design rainfall for the year 2100. Peak flood depth mapping for this scenario is provided in Appendix G along with an impact map which shows the impact on peak flood levels compared to the current climate \(1 \%\) AEP results. The mapping shows that climate change is expected to increase \(1 \%\) AEP flood levels by amounts which vary over the site from approximately 100 mm to 600 mm .

Council's requirements for filling of lots is to achieve 300 mm freeboard above the current climate \(1 \%\) AEP peak flood level. If the development is to adopt this as the minimum lot level, then it is expected that these lots will be subject to potential \(1 \%\) AEP inundation by up to 300 mm under future climate conditions. Considering these results, it is recommended that a higher flood freeboard is incorporated into the earthworks design.

\subsection*{5.4 Emergency Planning}

It is recommended that consideration be given to emergency planning aspects to manage the residual flood risks associated with flood events that are in excess of the design flood event (DFE). In particular, the northern most lot proposed near the confluence of Zacharia and Pie Creek has potential to become isolated during events in excess of the DFE. This risk may be managed by provision of a flood refuge area above the probable maximum flood level (not currently defined).

\section*{6 CONCLUSION}

This Flood Assessment has involved detailed flood modelling of the regional creek systems impacting the proposed development site. Flood modelling has been carried out in accordance with latest industry guidelines and has demonstrated that the proposed lot layout is feasible in relation to flood immunity requirements and it is predicted to cause no offsite flood impacts of consequence.

Peak flood levels from this investigation will be provided to the project civil engineers to assist in setting final fill lot levels.

The expected increases to design flood levels associated with climate change have been modelled and it is recommended that allowance be made for these in setting final development fill levels. HWMC is unaware of any specific requirements by Gympie Council in relation to this issue.

It is recommended that consideration be given to emergency planning aspects to manage the residual flood risks associated with flood events that are in excess of the design flood event (DFE).

\section*{7 REFERENCES}
1. BMT WBM, 2010, "TUFLOW User Manual"
2. Bureau of Meteorology, Online Rainfall IFD Data System 'http://www.bom.gov.au/hydro/has/cdirswebx/cdirswebx.shtml'
3. Department of Environment and Resource Management (2010) "Urban Stormwater Quality Planning Guidelines 2010".
4. Engineers Australia, 1987, "Australian Rainfall and Runoff"
5. Engineers Australia, June 2012, "Australian Rainfall and Runoff Revision Project 5: Regional Flood Methods, Stage 2 Report"
6. Engineers Australia, November 2012, "Australian Rainfall and Runoff Revision Project 5: Two Dimensional Modelling in Urban And Rural Floodplains, Stage 1\&2 Report"
7. Michael Boyd et al, 2007, "Details of the Theory Used in WBNM"
8. Michael Boyd et al, 2012, "WBNM User Guide"
9. Institute of Public Works Engineering Australasia, Queensland (IPWEAQ), 2016, "Queensland Urban Drainage Manual , 4th Edition" (QUDM)
10. Queensland Government, 2010, "Increasing Queensland's resilience to inland flooding in a changing climate: Final report on the Inland Flooding Study"
11. SCARM, 2000, "Floodplain Management in Australia: Best Practice Principals and Guidelines"
12. W.J. Syme, 2001, "Modelling of Bends and Hydraulic Structures in a Two-Dimensional Scheme"
13. W.J. Syme, 2011, "Modelling Structures", ASFPM SMS Workshop USA;

\section*{APPENDICES}

Appendix A Survey





\section*{Appendix B Cut-Fill Layout Plan}
```

